
Agile Ceremonies

Chapter 13

Julian M. Bass

Agile Software Engineering Skills



• Ceremonies are the group collaboration activities

• Iterations start with planning

• Each iteration has a review at the end to get customer 
feedback

Introduction



Introduction

© Springer Nature Switzerland AG 2022

J. M. Bass, Agile Software Engineering Skills,

https://doi.org/10.1007/978-3-031-05469-3_13



• Iteration Planning 

• Coordination Meetings 

• Customer Demonstrations

• Pair Programming

• Test-Driven Development

• Specialist Agile Ceremonies

Contents



• Deciding what to work on next

• Conducted at the start of each iteration

• Comprises five tasks

• prioritisation of requirements

• break-up requirements into technical tasks

• estimation of technical tasks and consequently requirements

• work item assignment within the team

Iteration Planning 



• Prioritisation

• Product owners prioritise requirements

• Features and Technical Tasks

• Break each feature (user story) into technical tasks

• Creating a list of smaller work items for each requirement

Iteration Planning



• Summary process, as follows

• Select highest priority user story from the backlog

• Discuss the purpose and scope of the user story

• The product owner answers questions about the user story

• The discussion is complete, once all questions have been answered

• The user story is broken-up into constituent technical tasks

• Depending upon the application domain, think about user interface tasks, application 
logic and data storage tasks as separate items

• Repeat the process for the next high priority user story in the product backlog

Iteration Planning



• Estimation

• Need to know how many features we can fit into an iteration

• Too few, team is under utilised

• Too many, difficult to maintain sustainable pace

• Two main approaches

• Story points

• Based on Fibonacci sequence 1, 3, 5, 8 and 13

• T-Shirt sizing

• Small, medium, large, extra large

Iteration Planning



• Planning poker technique

• Take each technical task in turn, the first round of voting starts

• Discuss each technical task, if necessary

• Team members write down (secretly) their estimates for the work item

• When everyone has finished writing, team members reveal their votes 
for the tasks

• Look at the story points assigned, see if there is close consensus (in 
novice teams or a new application domain, close consensus is 
unlikely)

Iteration Planning



• Planning poker technique (Cont.)

• If there is consensus, on the story point allocation, move on to the next 
technical task

• If there is not consensus, constructively discuss the highest and lowest 
story point estimates, try to understand why someone thought it was a 
larger or smaller task

• Following this discussion move into a second round of voting

• Continue rounds of voting and discussion until consensus emerges 
around the story point value for a task

• Then, move on to the next technical task or user story

Iteration Planning



• Task Assignment

• Decide who, in the team, is going to tackle each task

• People volunteer for tasks

• Self-organising teams develop a sense of shared commitment to group 
outcomes

• Unpopular tasks tend to get shared around

Iteration Planning



• Daily stand-up meetings

• Coordination meeting involving everyone in the team

• Everyone finds out what is going on

• Everyone answers three questions: 

• What have I been doing, since the last stand-up?

• What will I be doing, between now and the next stand-up?

• Are there any impediments preventing me from making progress?

Coordination Meetings



• Virtual stand-up meetings

• On-line stand-up meetings

• Where team members are working remotely or geographically 
distributed

• Hybrid (some people on-line, some people physically attending) best 
avoided

Coordination Meetings



• Kanban Boards

• Make visual the teams efforts towards project goals, (see Chap 10)

• Usually consists of three columns

• To Do, Doing and Done

• Tasks start off in the To Do column

• As project progresses, tasks are moved to the Done column

Coordination Meetings



• Demonstrate working code at the end of an iteration

• During the customer demonstration

• Introduce the purpose of the meeting

• Review the requirements you were supposed to implement

• Demonstrate each new feature of the software

• Review any requirements that you were unable to implement for any 
reason

• Collect and carefully record any feedback from the product owner or 
client

Customer Demonstrations



• Retrospectives

• Opportunity to learn from each iteration

• Everyone in the team writes down and shares

• Three things that worked well in the previous iteration

• Three things that, as a team, you could do better

• Then establish consensus on

• Three improvement actions for the next sprint

Customer Demonstrations



• Two developers work together in a pilot, co-pilot 
configuration

• One developer is more focused on low-level syntax

• This developer has a keyboard and is actually typing source code

• The second developer is considering higher-level structure and 
readability

• Focus on source code quality and acceptance testing

Pair Programming



• Automated tests are written before the code itself

• A cycle of activities

• Write a test

• Make it run

• Make it right

Test-Driven Development



• Spikes

• Occur where the estimate, for a requirement or technical task under 
development, proves to be inaccurate

• Usually means some previously hidden complexity has emerged

• Might choose to park the story for a future sprint

• Better might be to consider adding resources to that story

• Product owner might reduce the priority of some other activity, so that 
we can resolve the spike

Specialist Agile Ceremonies



• Swarm Programming

• More than two developers work together

• Useful to tackle some new task or technology

• Or, where progress is blocked by one particular problem

• Use swarm programming to address a high-priority spike

• Mob Programming

• Whole team works together all the time on same code

Specialist Agile Ceremonies



• Exercises 13.1 and 13.6 encourage creation of a learning 
journal

• Exercise 13.2 Explores iteration planning

• Exercise 13.3 Perform a stand-up status meeting

• Exercise 13.4 Perform a customer demonstration

• Exercise 13.5 Perform a retrospective

Exercises



• Iteration Planning

• Estimate tasks and select work items for iteration

• Coordination Meetings 

• Team status meetings, often held daily

• Customer Demonstrations

• Show customer working code to get feedback

• Retrospective

• Learn from previous iteration and set improvement goals for next one

Summary



• Pair Programming

• Pilot, co-pilot programming configuration

• Test-Driven Development

• Create tests first, then develop code to pass tests

• Specialist Agile Ceremonies

• Spikes, when things go wrong with a story during an iteration

• Swarm Programming, work as a team on source code when needed

• Mob programming, work as a team on source code always

Summary


